The structure of Cartan subgroups in Lie groups

نویسندگان

چکیده

We study properties and the structure of Cartan subgroups in a connected Lie group. obtain characterisation which generalises W\"ustner's theorem for same. show that are same as those centralizers maximal compact radical. Moreover, we describe recipe constructing containing certain nilpotent solvable characterise quotient group modulo closed normal subgroup images ambient also density power maps on image any $k$-th map has dense if its restriction to corresponding have images.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maurer–Cartan Forms and the Structure of Lie Pseudo–Groups

This paper begins a series devoted to developing a general and practical theory of moving frames for infinite-dimensional Lie pseudo-groups. In this first, preparatory part, we present a new, direct approach to the construction of invariant Maurer–Cartan forms and the Cartan structure equations for a pseudo-group. Our approach is completely explicit and avoids reliance on the theory of exterior...

متن کامل

the structure of lie derivations on c*-algebras

نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.

15 صفحه اول

Cartan Structure of Infinite Lie Pseudogroups

Since Chevalley’s seminal work [12], the definition of Lie group has been universally agreed. Namely, a Lie group G is an analytic manifold G on which is defined an analytic group operation ∗ with analytic inverse. The historical evolution of this definition was not direct. In the 1870s when Lie began his work on “continuous groups of transformations”, the notion of abstract group was in its in...

متن کامل

Cartan subgroups of groups denable in o-minimal structures

We prove that groups definable in o-minimal structures have Cartan subgroups, and only finitely many conjugacy classes of such subgroups. We also delineate with precision how these subgroups cover the ambient group.

متن کامل

Cartan subgroups of groups definable in o-minimal structures

We prove that groups definable in o-minimal structures have Cartan subgroups, and only finitely many conjugacy classes of such subgroups. We also delineate with precision how these subgroups cover the ambient group.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Zeitschrift

سال: 2021

ISSN: ['1432-1823', '0025-5874']

DOI: https://doi.org/10.1007/s00209-021-02704-y